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Abstract: It is necessary to confirm that a new drug can be appropriately cleared from the human body. However,
checking the clearance pathway of a drug in the human body requires clinical trials, and therefore requires large cost.
Thus, computational methods for drug clearance pathway prediction have been studied. The proposed prediction
methods developed previously were based on a supervised learning algorithm, which requires clearance pathway in-
formation for all drugs in a training set as input labels. However, these data are often insufficient because of the high
cost of their acquisition. In this paper, we propose a new drug clearance pathway prediction method based on semi-
supervised learning, which can use not only labeled data but also unlabeled data. We evaluated the effectiveness of our
method, focusing on the cytochrome P450 2C19 enzyme, which is involved in one of the major clearance pathways.
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1. Introduction
Drug development is a time-consuming and expensive process.

More than 10 years and tens of billion dollars are required for ap-
proval of a new drug [1]. One of the reasons for this time lag
and large cost is that many candidate drug compounds are re-
tracted in the later stage of development because of safety issues,
including side effects, insufficient clearance, and so on. Thus, to
reduce the cost of drug development, the appropriate selection of
compounds based on the safety of a drug in the early stage of
development is a very effective strategy, especially if determined
before the compound synthesis stage.

Drug clearance pathway prediction is one of the main computa-
tional methods used to determine a drug’s safety. In general, the
method predicts whether a chemical compound is cleared from
the human body by a target clearance pathway. Common clear-
ance pathways include metabolism and excretion pathways such
as those involving cytochrome P450 (CYP), organic anion trans-
porting polypeptide (OATP), and others. Several drug clearance
pathway prediction methods have been established to date. For
example, Sorich et al. proposed a prediction method for UDP-
glucuronosyl transferase (UGT) excretion pathway [2], and Ham-
mann et al. proposed a prediction method for 3 types of CYP
metabolism pathways [3]. Furthermore, Hotta et al. proposed
a prediction method for multiple pathway categories, including
the CYP, OATP, and renal excretion (Renal) pathways, simulta-
neously [4].
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These drug clearance pathway prediction methods are based on
supervised learning techniques, which is currently the most pop-
ular method for drug clearance pathway prediction. In supervised
machine learning, the algorithm constructs a prediction model
using labeled data, for which correct values are already known,
and then predicts the labels of unknown data using the predic-
tion model. Various algorithms have been applied for clearance
pathway prediction, such as the rectangular boundary method [5],
support vector machine (SVM) [6], [7], and Boosting [8] algo-
rithms. According to previous studies, the SVM appears to be
the best algorithm for this prediction problem [6]. However, the
prediction accuracies are still insufficient for several pathways.
One of the clear reasons for this insufficient prediction accuracy
is insufficiency in the training data. It is difficult to increase the
amount of labeled data because expensive wet experiments and
clinical trials are required for determining the clearance pathways
of a drug.

The semi-supervised learning method can be used for both la-
beled and unlabeled data, for which correct values are unknown
in the training process. The effectiveness of the semi-supervised
learning method has been confirmed in several fields, including
for resolving the text-classification problem [9] and the substrate
specificity prediction problem [10]. In clearance pathway predic-
tion, unlabeled data are easily obtained because information for a
vast amount of compounds can be gathered from public databases
such as ZINC [11], PubChem [12], and DrugBank [13]. There-
fore, the semi-supervised learning method would be suitable for
drug clearance pathway prediction.

Here, we propose a novel drug clearance pathway prediction
method based on the semi-supervised learning algorithm. We
focus on CYP2C19, one of the major clearance pathways, as a
prediction target. CYP2C19 has genotypes of two mutations, and
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approximately 25% of the Japanese population are genotypically
identified as poor metabolizers [14]. This means that if these in-
dividuals take a drug that is metabolized by CYP2C19, the drug
will not be appropriately cleared. Therefore, prediction of this
clearance pathway is important.

2. Drug clearance pathway prediction based
on semi-supervised learning

2.1 Semi-supervised learning
Semi-supervised learning is a machine learning method origi-

nated from the self-training algorithm proposed by Scudder [15].
The supervised learning method uses only labeled data for the
training stage, and cannot use unlabeled data. By contrast, the
unsupervised learning method uses only unlabeled data for the
training stage. Some semi-supervised learning algorithms make
clusters based on the unlabeled data and simultaneously make
predictions based on the labeled data. Thus, better prediction can
be obtained by using both labeled and unlabeled data. There are
various semi-supervised learning algorithms, such as co-training
[16], transductive framework [17], and Universum SVM [18].

In this study, we used a transductive SVM (TSVM) algorithm,
which is an extension of the SVM algorithm based on a transduc-
tive framework. The TSVM algorithm was proposed by Joachims
[9], and details of the training algorithm are described below:
( 1 ) The support vector is constructed from only labeled data, as

in the conventional SVM model.
( 2 ) Unlabeled data are classified based on the support vector, as

in the conventional SVM model.
( 3 ) The labeled and unlabeled data are given a penalty parame-

ter, which is a weight for misclassification. The penalty for
unlabeled data is smaller than that for labeled data.

( 4 ) The support vector is constructed again from both the labeled
and unlabeled data.

( 5 ) The unlabeled data are re-classified based on the new sup-
port vector.

( 6 ) Step (4) and (5) are repeated until there is no change in any
of the classified results.

( 7 ) The penalty for unlabeled data is strengthened.
( 8 ) Step (4) to step (7) are repeated.
( 9 ) When the penalty for unlabeled data is equal to the penalty

for labeled data, the training process is ended and the last
support vector is outputted.

As this algorithm suggests, if the number of unlabeled data en-
tries is equal to 0, the TSVM algorithm works in the same way as
the conventional SVM algorithm. Therefore, the comparison be-
tween the SVM and TSVM algorithms is easier than among other
semi-supervised learning algorithms.

In this experiment, we used SVMlight v6.02 for implementation
of both the SVM and TSVM [19] algorithms.

2.2 Dataset
In this study, we focused on a single clearance pathway,

CYP2C19. Thus, positively labeled compounds are metabolized
by CYP2C19, and negatively labeled compounds are not metab-
olized by CYP2C19. We adopted the dataset used by Toshimoto
et al. [7] as the labeled data. This dataset contains 240 com-

pounds, 10 of which are positively labeled and 230 of which are
negatively labeled.

In the TSVM algorithm, both unlabeled and labeled data are
used in the training process. Ideally, both the labeled and unla-
beled data should be sampled from the same population. How-
ever, the labeled data are often biased because the clearance path-
ways are generally determined only for drug candidates, and the
distribution of labeled compounds might be different from that
of whole chemical compounds. Thus, to reduce the influence
of sampling from different populations, all of the unlabeled data
were selected only from already approved drug compounds. We
constructed an unlabeled dataset using the ZINC database, which
is a popular public compounds database, and includes data for
more than 35 million compounds. There are also data subsets in
the ZINC database, and we used the ZINC drug database (zdd)
subset, which consists of 2,924 FDA-approved drug compounds,
including chiral compounds and duplicated compounds to the la-
beled data. We omitted these compounds because the chiral com-
pounds cannot be distinguished using our method, and finally ob-
tained 1390 compounds as the unlabeled dataset.

2.3 Features
Kusama et al. used four features for the prediction: molecular

weight (MW), octanol-water distribution coefficient (logD), pro-
tein unbound fraction in plasma (fup), and category of charge at
neutral pH [5]. In this study, we essentially used the same features
as those used in Kusama et al.: MW, logD, and fup. In addition to
these features, we used the number of positively charged atoms at
neutral pH (charge+) and the number of negatively charged atoms
at neutral pH (charge−) instead of the category of charge at neu-
tral pH. These features were calculated using PreADMET v2.0
software (Bioinformatics & Molecular Design Research Center,
South Korea).

3. Results
We constructed a prediction model using the SVM and TSVM

algorithms, and performed evaluation experiments to check the
performance of our proposed method.

3.1 Evaluation measure
In this study, the number of positive and negative labels were

imbalanced, and therefore accuracy, which is the ratio of cor-
rectly classified data, is an inappropriate measure for this eval-
uation. Thus, we employed the f-measure as the evaluation mea-
sure. The f-measure is the harmonic mean of precision and recall,
and is useful for evaluating the performance of prediction based
on an imbalanced dataset. Previous related studies also used the
f-measure [4], [7], therefore making it suitable for comparison to
previous work.

To calculate the f-measure, precision and recall values are re-
quired:

Precision =
#TP

#TP + #FP
(1)

Recall =
#TP

#TP + #FN
(2)

TP, FN, and FP represent the number of true positives, false nega-
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tives, and false positives, respectively. Thus, precision is the ratio
of the number of positives that correctly predict to the number of
predicted positives, and recall is the ratio of the number of pos-
itives that correctly predict to the number of all positives, which
are predicted as both positives and negatives.

F = 2 · recall · precision
recall + precision

=
2 · #TP

#FN + #FP + 2 · #TP
(3)

Because it is based on the harmonic mean, a better f-measure is
obtained when both the recall and precision are relatively high.

To calculate the evaluation measure, we used leave-one-out
cross validation. If the number of labeled data entries is N, N − 1
data entries are used as a training data and the remaining data en-
try is predicted. This training and prediction are repeated N times,
and the results of each prediction are cumulated. The cumulated
result is then used to calculate the evaluation measure.

3.2 Kernel selection and hyper-parameter optimization
The selection of a kernel function and hyper-parameter opti-

mization highly influence the performance of prediction in an
SVM-based algorithm. In this study, we employed the Gaussian
kernel shown below.

K(x,z) = exp
(
−γ∥ x − z ∥2

)
(4)

x and z indicate the vectors of features. If these features are sim-
ilar, the output of K(x,z) is higher; therefore, K(x,z) indicates
the similarity of the two vectors.

When employing the Gaussian kernel, there are two hyper-
parameters that need to be optimized: cost of the soft-margin
parameter C, and the width parameter of the Gaussian kernel γ.
The larger the cost parameter C and the width parameter γ, there
is an increased likelihood of obtaining a more complicated hy-
perplane. For hyper-parameter optimization, we employed the
following two steps.
global optimization First, we trained the TSVM and SVM for

each combination of 20 patterns of parameter C and 20 pat-
terns of parameter γ as follows:

γ = {2−15, 2−14, · · · , 23, 24} (5)

C = {2−5, 2−4, · · · , 213, 214} (6)

The best global parameters C0 and γ0 were obtained on the
basis of the evaluation measure.

local optimization Second, we determined the best parameter
using the results of global optimization. As for global opti-
mization, we trained the TSVM and SVM for each combi-
nation of 24 patterns of parameters C and γ as follows:

γ = {γ0 · 2−3, γ0 · 2−2.75, · · · , γ0 · 22.5, γ0 · 22.75} (7)

C = {C0 · 2−3,C0 · 2−2.75, · · · ,C0 · 22.5,C0 · 22.75} (8)

We obtained the best parameters Cbest and γbest from these
combinations.

3.3 Unlabeled dataset
In the evaluation, we generated subsets of sizes 100, 200, 400,

and 800 by randomly selecting from the unlabeled dataset includ-
ing 1390 compounds, and used these subsets in the training to

Table 1 Prediction result of pathway CYP2C19

CYP2C19 f-measure
average S.E.

SVM 0.2941 —
TSVM (100) 0.3506 0.0118
TSVM (200) 0.3742 0.0140
TSVM (400) 0.3586 0.0109
TSVM (800) 0.3668 0.0072

Fig. 1 Average and standard error of f-measure: CYP2C19

Table 2 The result of the Student’s t-test
p-value SVM TSVM (100) TSVM (200) TSVM (400)

TSVM (100) 0.0010
TSVM (200) 2.9e-4 0.2430
TSVM (400) 2.2e-4 0.5003 0.3934
TSVM (800) 3.5e-6 0.2281 0.6916 0.5456

confirm the influence of the number of unlabeled data entries and
how many unlabeled data entries are needed for this prediction
problem. In addition, we performed the random sampling ten
times and checked the performance for each sample.

3.4 Results of the evaluation test
Table 1 and Fig. 1 show the results of the evaluation test. Num-

bers in parentheses represent the numbers of unlabeled data en-
tries. For the results of the TSVM, the averages and standard er-
rors (S.E.) are shown for checking the influence of sampling bias
of the unlabeled data. The results showed that the TSVM always
performed much better than the SVM. The average f-measure was
improved until reaching a size of 200 unlabeled data entries, and
then appeared to be saturated. On the other hand, as the number
of unlabeled data entries was increased, the S.E. of the f-measure
was likely to decrease.

To assess the statistical significance of the improvement in pre-
diction given by the TSVM and the effectiveness of the increase
of the unlabeled dataset, we analyzed the f-measures using the
Student’s t-test and calculated p-values for all combinations. Ta-
ble 2 shows the results, and the values indicated in bold represent
the values that are statistically significant (p < 0.05). The results
showed that all p-values for differences between the SVM and
TSVM were less than 0.05. This indicates that the improvement
conferred by the TSVM was statistically significant regardless of
the number of unlabeled data entries. In contrast, the p-values for
differences among TSVMs with different sizes of the unlabeled
dataset were not less than 0.05. According to Joachims [9], there
is a limitation of improvement in prediction even when using a
vast amount of unlabeled data, which suggests that this small un-
labeled dataset is sufficient for the improvement of the prediction,
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Table 3 precision & recall: CYP2C19

precision recall f-measure
average S.E. average S.E. average S.E.

SVM 0.2083 — 0.5000 — 0.2941 —
TSVM (800) 0.4088 0.0217 0.3500 0.0224 0.3668 0.0072

and increasing the number of unlabeled data entries is not effec-
tive for this prediction problem.

4. Discussion
4.1 Balance of precision and recall

If f-measure values are equivalent in two prediction methods,
the precision and recall may nonetheless be different. Even if the
performance is improved according to the f-measure, a large de-
crease of recall or precision can cause problems in some applica-
tions. Thus, we checked the precision and recall of the prediction
results.

Table 3 shows the precision and recall values for the TSVM
(800). The precision of the TSVM was higher than that of the
SVM, whereas the recall of the TSVM became lower than that of
the SVM. Therefore, the TSVM can be suitable for predicting a
few compounds that are more likely to metabolize. Because there
are millions of candidate compounds, whereas only hundreds or
thousands of compounds can reasonably be tested in wet exper-
iments, the ability to obtain a relatively small amount of com-
pounds that are predicted to be most likely to metabolize is a very
important feature of this model. Thus, we think that this charac-
teristic of the TSVM makes it more desirable than the SVM.

4.2 ROC analysis
As previously discussed, positive compounds should be ranked

among the top hundreds or thousands. This means that it is more
important to determine the true positive rate in a couple of percent
of data that are top-ranked by prediction. This determination is
called early enrichment. Unfortunately, since there are only a few
labeled data entries, especially for the positive data, we could not
stably obtain the positive rate in the top few percent of the data.
Due to this limitation, we drew a receiver operating characteristic
(ROC) curve based on the positiveness of the data (in this case,
the decision values of the SVM and TSVM), and calculated the
area under the curve (AUC) for the overall data and the top 10%.
For distinction, the overall AUC is referred to as AUC (100%)
and the top 10% AUC is referred to as AUC (10%) hereafter. To
draw the ROC curve, the FP-rate and TP-rate are required:

FP-rate =
#FP

#FP + #TN
(9)

TP-rate =
#TP

#TP + #FN
(10)

The ROC curve can be drawn once the positiveness of each tested
data entry is obtained. To draw the curve, we added the data in
order of their positiveness. If positive data are added, the TP-
rate increases, whereas if negative data are added, the FP-rate
increases. The ROC curve shows these changes as a line, and
the curve describes the tradeoff between the TP-rate and FP-rate.
Higher AUCs are obtained when the TP-rate is higher, even if the
FP-rate is still low.

The ROC curves for the TSVM with 800 unlabeled data en-

Fig. 2 ROC curve: CYP2C19

Table 4 AUC value: CYP2C19
AUC (100%) AUC (10%)

SVM 0.6665 0.0265
TSVM (800) (average) 0.6635 0.0393
(random) (0.5000) (0.0050)

tries (TSVM (800)) and the SVM are shown in Fig. 2. There are
10 plots for the TSVM and one plot for the SVM. The diagonal
dotted line shows the performance of random prediction, and the
vertical dotted line shows the threshold for the top-ranked 10%.
The results of the ROC analysis showed that the performance of
the TSVM was comparable to that of the SVM in AUC 100%
but was superior to the SVM in AUC (10%) (Table 4). This re-
sult suggests that the prediction improvement by the TSVM is
more obvious in earlier enrichment, indicating it is effective for
this type of prediction because of the importance of earlier en-
richment described above.

4.3 Application of the proposed method to other clearance
pathways

Our results demonstrated that the TSVM is effective to pre-
dict the CYP2C19 clearance pathway. Thus, we also applied the
method to other clearance pathways. We employed the same
dataset used in Kusama et al. [5], which includes five path-
ways: CYP2C9, CYP2D6, CYP3A4, Renal, and OATP. The re-
sults with 800 unlabeled data entries are shown in Table 5 and
Fig. 3. The TSVM succeeded in improving the predictions for
some pathways (CYP2C9, CYP2D6) compared with those of the
SVM. However, the accuracy of prediction for the other path-
ways (CYP3A4, Renal, OATP) was equal to or worse than that
of the SVM. The TSVM particularly improved the accuracy of
the CYP2C9 pathway, which showed the worst f-measure among
all of the tested pathways when the SVM was used. This result
indicates that the TSVM is likely to improve the accuracy of pre-
diction when that of the SVM is considerably insufficient.

To investigate the effect of the TSVM more deeply, we also
drew an ROC curve for CYP3A4 prediction, which was worse
when the TSVM was used compared to the SVM. ROC curves
of CYP3A4 are shown in Fig. 4 and the AUC values are shown
in Table 6. According to the ROC curves and AUC values, the
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Table 5 Prediction result of other pathways

f-measure SVM TSVM (800)
average S.E.

CYP2C9 0.4151 0.4537 0.0110
CYP2D6 0.6667 0.6940 0.0059
CYP3A4 0.7630 0.7417 0.0018

Renal 0.7361 0.7262 0.0021
OATP 0.6667 0.6319 0.0110

Fig. 3 Average and standard error of f-measure: other pathways

TSVM was worse than the SVM in terms of f-measure, whereas
the TSVM was better than the SVM in terms of AUC (10%).
The f-measure is calculated with respect to the points of the ROC
curve lines, whereas the AUC is calculated using all or a par-
ticular (for example 10%) area of the ROC curve. Therefore,
if one method is much better on one point of the ROC curve,
the f-measure would be drastically improved, while the AUC
would be only slightly improved. In this case, the calculation
point of the f-measure for SVM prediction of CYP3A4 is the
point (FP-rate,TP-rate) = (0.2547, 0.8987). This point is slightly
above the other TSVM ROC curves, which explains why the
CYP3A4 f-measure based on the SVM was better than that of
the TSVM. On the other hand, because the distance of the ROC
curves between the SVM and TSVM is very small, their AUC
(100%) values were approximately equivalent.

5. Conclusion
In this study, we proposed a new drug clearance pathway pre-

diction based on the TSVM. The TSVM improved the clearance
pathway prediction for CYP2C19 compared with the SVM, and
the improvement was statistically significant. By contrast, there
was no significant improvement observed by increasing the num-
ber of unlabeled data entries in the TSVM. These results suggest
that a dataset with only 100 unlabeled data entries is sufficient for
the prediction problem with a dataset containing 240 labeled data
entries.

Investigation of other semi-supervised learning methods is still
required in future studies. We employed the TSVM as a semi-
supervised learning method; however, there are still many other
types of semi-supervised learning methods, even among those
that are based on the SVM such as Universum SVM [18]. There-
fore, we have to investigate which semi-supervised learning algo-
rithm is the most suitable for drug clearance pathway prediction.

Acknowledgments We are grateful to Mr. Kota Toshi-
moto, RIKEN Innovation Center, Research Cluster for Innova-
tion, RIKEN, for his suggestions and advice. This work was

Fig. 4 ROC curve: CYP3A4

Table 6 AUC value: CYP3A4
AUC (100%) AUC (10%)

SVM 0.8499 0.0187
TSVM (800) (average) 0.8479 0.0215
(random) (0.5000) (0.0050)

supported by the Education Academy of Computational Life Sci-
ences (ACLS) at the Tokyo Institute of Technology.

References
[1] “PhRMA New Drug Approvals in 2011”, http://www.phrma.org/
[2] Sorich M.J., Miners J.O., McKinnon R.A. et al.: “Compari-

son of Linear and Nonlinear Classification Algorithms for Pre-
diction of Drug and Chemical Metabolism by Human UDP-
Glucuronosyltransferase Isoforms”, Journal of Chemical Informa-
tion and Computer Sciences 43(6), pp.2019-pp.2024, 2003

[3] Hammann F., Gutmann H., Baumann U. et al.: “Classification of
Cytochrome P450 Activities Using Machine Learning Methods”,
Molecular Pharmaceutics 6(6), pp.1920-pp.1926, 2009

[4] Hotta S., Toshimoto K., Ikeda K., et al.: “Drug clearance pathway
prediction on a web application”, IPSJ SIG Technical Report 2010-
BIO-21(20), pp.1-pp.8, 2010

[5] Kusama M., Toshimoto K., Maeda K. et al.: “In silico classifica-
tion of major clearance pathways of drugs with their physiochemi-
cal parameters.”, Drug Metabolism and Disposition 38(8), pp.1362-
pp.1370, 2010

[6] Toshimoto K., Kusama M., Ikeda K., et al.: “In silico Prediction
System of Major Drug Clearance Pathways -Expansion for Multiple
Pathway Prediction and External Validation-”, IPSJ SIG Technical
Report 2010-BIO-20(8), pp.1-pp.8, 2009

[7] Toshimoto K., Wakayama N., Hotta S., et al.: “Establishing an in
silico prediction system of nine major in vivo drug clearance path-
way using machine learning technique.”, The 27th Annual Meeting
of Japanese Society for Alternatives to Animal Experiments, P-43,
2014

[8] Ikeda K., Toshimoto K., Kusama M., et al.: “Prediction of drug clear-
ance pathway by boosting algorithm”, IPSJ SIG Technical Report
2009-BIO-17(10), pp.1-pp.8, 2009

[9] Joachims T.: “Transductive inference for text classification using
support vector machines”, Proceedings of the Sixteenth International
Conference on Machine Learning, pp.200-pp.209, 1999
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